OS-10. Effects of hydrogen saline pretreatment on mouse fatty liver ischemia-reperfusion injury ^OShaowei Li^{1,4,6}, Terumi Takahara², Masayuki Fujino^{1,3}, Chi Liu¹, Ryosuke Kurokawa^{1,5}, Shinichi Hirano^{1,5}, Bunpei Sato⁵, Xiao-Kang Li¹ ¹Division of Transplantation Immunology, National Institute for Child Health and Development, Tokyo; ²Third Department of Internal Medicine, University of Toyama, Toyama; ³AIDS Research Center, National Institute of Infectious Diseases, Tokyo; ⁴Second Department of Surgery, University of Toyama, Toyama; ⁵MiZ Co., Ltd., Tokyo; Japan; ⁶Clinical Medicine Research Center of Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China . Background & Aim: Fatty liver has lower tolerance against ischemia-reperfusion (I/R). We aimed to ameliorate liver injury following I/R in fatty liver. Diatomic hydrogen (H₂) was proposed beneficial effects in diverse models of acute and chronic disease, and exert anti-apoptotic, anti-inflammatory effects. In this study, we aimed to elucidate the protective effect of H₂ saline on I/R liver injury in fatty liver model. Methods: We developed non-alcoholic steatohepatitis model by giving methionine and choline deficient high fat (MCDHF) diet for 3 weeks and divided into 3 groups; sham operation on MCDHF diet mice group (MCDHF). MCDHF diet and saline treatment group (MCDHF I/R), treated with saline in the whole process of I/R. MCDHF diet and H₂ saline treatment group (MCDHF+ H₂+ I/R), The concentration of 7ppm H₂ saline was administrated in the whole process of I/R. All I/R liver injury was induced ischemia for 15min, followed by 3hr reperfusion. Then, the livers were obtained and analyzed. Results: MCDHF I/R group showed higher serum ALT and AST levels, compared to sham operated mice. In H₂ saline treated group, serum ALT and AST levels were significantly decreased. TUNEL positive apoptotic cells and F4/80 positive cells were increased in MCDHF I/R group, but H₂ saline significantly reduced TUNEL-positive cells and F4/80 positive cells numbers. Real-time quantitative PCR showed elevated mRNA levels of inflammatory cytokines in MCDHF I/R group, but decreased levels in MCDHF+ H₂ saline + I/R group. Furthermore, Real-time quantitative PCR elevated mRNA levels of three groups, inflammatory cytokines including TNF-, iNOS, IL-6 and members of the signaling pathway like TLR4, NF-kB were examined in the fatty liver. The expression were increased in MCDHF I/R group, but were obviously downward in the MCDHF+ H₂ saline + I/R group. Moreover, the expression of HO-1 was significantly increased by treatment with H2 saline. Conclusion: These results demonstrated that H₂ saline treatment ameliorated I/R liver injury in fatty liver model. We confirm the protective effects of H₂ saline by reducing hepatocyte apoptosis, inhibiting of macrophage activation and inflammatory cytokines, and inducing HO-1 expression. Thus, treatment of H₂ saline has a protective effect and safe therapeutic activity at the situation of I/R such as liver transplantation of fatty liver. ## [MEMO]